Transition-Metal-Free Direct Alkylation of Aryl Tetrazoles via Intermolecular Oxidative C−N Formation

Liang Wang,* Kaiqiang Zhu, Qun Chen, and Mingyang He*

School of Petro[ch](#page-5-0)emical Engineering and Jiangsu Key Laboratory of Adva[nce](#page-5-0)d Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China

S Supporting Information

ABSTRACT: A transition-metal-free synthetic approach for constructing alkylated aryl tetrazoles has been developed using n-Bu₄NI as the catalyst and t-BuOOH as the oxidant. It involves the direct C−N bond formation through sp³ C−H activation. A wide range of benzylic C−H substrates (or alkyl ethers) and aryl tetrazoles undergo this reaction smoothly to deliver the corresponding products in good yields.

 Γ etrazoles are of great importance due to their wide applications in organic chemistry,¹ medicinal chemistry,² and material science.³ For example, biphenyl tetrazoles are key intermediates for preparation of [sa](#page-5-0)rtan drugs, and [2](#page-5-0) arylcarbap[e](#page-5-0)nems are useful antibiotics.⁴ Recently, tetrazoles were also utilized as directing groups in C−H activation reactions. Seki reported an efficient Ru([II](#page-5-0)I)-catalyzed synthesis of angiotensin II receptor blockers (ARBs) using tetrazole as the directing group (Scheme 1, (a)).^{5a} Ackermann and coworkers also disclosed highly efficient Ru(II)-catalyzed direct ortho-arylations of aryl tetrazol[es.](#page-1-0)^{5b} Ins[pir](#page-5-0)ed by their work, we developed a rhodium-catalyzed direct ortho C−H olefination reaction of aryl tetrazoles (Sche[me](#page-5-0) 1, (b)).^{5c}

Despite the utilities of the tetrazole moiety, reaction for preparation of alkylated tetrazol[es](#page-1-0) has [a](#page-5-0) limited scope. Generally, they were synthesized by S_N2 reaction between an alkyl halide and a tetrazole. For example, Aridoss and Laali reported a base-promoted the synthesis of alkylated tetrazoles in refluxing acetonitrile (Scheme 1, (c)).⁶ The major drawbacks associated with this procedure were the expensive alkyl halides, moderate yields as well as the fo[rm](#page-1-0)ation [o](#page-5-0)f isomeric dialkylated mixtures.

Recently, the cross-dehydrogenative coupling (CDC) reaction has arisen as an excellent synthetic method to construct more complex compounds.⁷ The CDC strategy is very powerful with high atomic economy since no prefunctionalization or preactivation of starting [m](#page-5-0)aterials is required. Among the reported procedures, the metal-free $n-Bu_4$ NI/TBHP system turns out to be the focus of current interest, 8 and some excellent protocols for C−O,⁹ C−N,¹⁰ and C−S¹¹ bond formation have been developed. However, the [C](#page-6-0)−N bond formation catalyzed by *n*-Bu₄NI [v](#page-6-0)ia sp³ C[−](#page-6-0)H activatio[n h](#page-6-0)as not been fully explored, especially for the synthesis or functionalization of N-containing heterocycles.

Meanwhile, hydrocarbons such as methylarenes are the most cheap and readily available raw materials for chemical industries. Therefore, the direct formation of C−C and C−X bonds via C−H activation of methylarenes is of great importance and is also a big challenge currently. As a part of our continuous interest in the functionalization of tetrazoles,^{5c} herein, we report a metal-free alkylation of aryl tetrazoles with benzylic C−H substrates or alkyl ethers by using n-Bu4NI [as](#page-5-0) catalyst and t-BuOOH as oxidant (Scheme 1, (d)).

Initially, toluene 1a and 5-phenyl-2H-tetrazole 2a were chosen as the model substrates to opti[m](#page-1-0)ize the reaction conditions (Table 1). A 29% yield of product 3aa was obtained using *n*-Bu₄NI (0.2 equiv) as catalyst and TBHP (3 equiv) as oxidant in ethyl [ace](#page-1-0)tate. Replacing TBHP by other oxidants such as H_2O_2 , DTBP, $K_2S_2O_8$, or O_2 resulted in the failure of the reaction (Table 1, entries 2−5). Reactions in other solvents, including N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,2-dichl[or](#page-1-0)oethane (DCE), and acetonitrile, gave the desired product 3aa in much lower yields. Encouragingly, a 67% yield of 3aa was obtained under solvent-free conditions. Increasing the amount of toluene improved the yield notably, and the highest yield was obtained in 1 mL of toluene (ca. 30 equiv) (Table 1, entries 10−12). In addition, no product was observed in the absence of either n -Bu₄NI or TBHP (Table 1, entries 13 and [1](#page-1-0)4). Increasing the amount of TBHP to 5 equiv led to a decreased yield. Other catalysts, such as n -Bu₄NBr, n -Bu₄NCl, I_2 , and NaI, were also evaluated; however, unsatisfactory results were obtained (Table 1, entries 17−20). Finally, the survey on the reaction temperature showed that 80 °C was the optimum.

Received: October 6, 2014 Published: November 11, 2014

Table 1. Optimization of Reaction Conditions^a

^aReaction conditions: 1a (3 mmol), 2a (0.3 mmol), solvent (1 mL), catalyst, and oxidant were heated in a sealed tube for 12 h. $^b\mathrm{TBHP}\text{: }tert\text{-butyl}$ hydroperoxide 70% in water, H₂O₂ 30% in water, DTBP: di-tert-butyl peroxide 98%. ^FIsolated yields. ^dProduct not observed. ^eToluene (20 equiv).
^IToluene (30 equiv). I mI 1 ⁸Toluene (1 5 mI 1 T_{O} ure perenne 70% in mater, T_{O} g g σ in mater.

With the optimized conditions in hand, a series of methylarenes were employed for oxidative coupling with 2a (Table 2). Generally, methylarenes bearing either electrondonating or electron-withdrawing substituents reacted with 2a smoothly to afford the desired products in moderate to good yields (3aa−3la). Both xylenes and mesitylene were efficiently

Table 2. Reaction Scope for Methylarenes^a

a
Reaction conditions: 1 (9 mmol), 2a (0.3 mmol), TBAI (0.06 mmol, 20 mol %), TBHP (0.9 mmol, 3 equiv), 80 °C, 12 h. Isolated yields.

Scheme 2. Amination Reaction of Selected Alkyl Ethers

transformed to the corresponding products with high selectivities, giving only *mono*-amination products (3ba–3ea). Other para-substitued toluene substrates with functional groups including t-butyl, chloro, bromo, fluoro, methoxyl, and nitro were also tolerated under the conditions (3fa−3la). Compared with the halo-substituted toluene substrates, the starting materials 1j and 1l showed relatively lower activities. For substrate 1j, a small amount of amination product on the methoxyl group was also detected. Moreover, the steric hindrance showed little influence on the reaction, and substrate 1k underwent this coupling reaction to deliver the product 3ka in good yield. Other benzylic C−H substrates such as ethylbenzene and diphenylmethane also proceeded smoothly

to furnish the corresponding products in 85% and 77% yields, respectively.

As mentioned above, the amination reaction on the methoxyl group of substrate 1j prompted us to extend this protocol to the alkyl ethers (Scheme 2). Under the optimized conditions, the selected alkyl ethers including dioxane, 1,2-dimethoxyethane, and tetrahydro-2H-pyran were found to react smoothly to generate the coupling products 5aa−5ca with moderate to good yields. For the 1,2-dimethoxyethane, it was worth noting that the amination reaction took place mainly on the methylene group.

To further explore the scope of this protocol, a series of aryl tetrazoles were investigated, and the results are summarized in Table 3. To our delight, aryl tetrazoles with various substituents

a
Reaction conditions: toluene (9 mmol), 2 (0.3 mmol), TBAI (0.06 mmol, 20 mol %), TBHP (0.9 mmol, 3 equiv), 80 °C, 12 h, isolated yields.

coupled with toluene smoothly to afford the desired products in good yields. Various functional groups, including methyl, methoxyl, chloro, fluoro, trifluoromethyl, and nitro, survived well under the reaction conditions. Negligible steric hindrance influence was observed for the tetrazole substrate (3ad, 74%). For the tetrazole substrate bearing methoxyl at the para position, however, a lower yield was obtained (3ah, 63%). To our delight, 5-(furan-2-yl)-2H-tetrazole worked well with toluene to give the desired product 3aj in 70% yield.

Furthermore, a scale-up reaction was performed to demonstrate the practicability of the developed protocol (10 mmol scale). The amination reaction proceeded smoothly under the optimized conditions to provide the product 3aa in 72% yield (Scheme 3).

To gain insight into the mechanism, several control experiments were performed (Scheme 4). Initially, when 1 equiv of radical inhibitor, BHT (2,6-di-tert-butyl-4-methylphenol), was added to the reaction mixture, only a trace amount of product 3aa was observed (Scheme 4, (a)). This result indicated that a radical pathway may be involved in this reaction. Next, the role of TBAI was investigated. The color of the reaction mixture turned brown after addition of TBAI, suggesting the generation of iodine. However, replacement of TBAI with I_2 inhibited the reaction (Scheme 4, (b)). A trace amount of product 3aa was obtained by switching the catalyst to NaI. Additionally, reaction of benzyl iodide and 2a led to a mixture, which ruled out the possibility of nucleophilic substitution of 2a to the benzyl iodide. Moreover, the kinetic isotopic effect (KIE) experiment was studied (Scheme 4, (d)). The result shows a significant kinetic isotope effect $(k_H / k_D =$

standard conditions (a) 3aa, trace $1a$ BHT (1.0 equiv) I₂ or Nal (20 mol%) (b) $1a$ 25 3aa, trace TBHP (3 equiv) 80 °C, 12h standard conditions (c) **Mixtures** standard conditions $2a$ [D]3aa' 3aa $+$ ratio: 13.2/1 [D₈]toluene

Scheme 4. Control Experiments

13.2), indicating that the C−H bond cleavage of toluene may be the rate-determining step (see the Supporting Information).

On the basis of the above experimental results and literature reports,^{9c,10e} a plausible mechanism [is proposed \(Scheme 5\)](#page-5-0). Initially, the oxidation of TBAI by TBHP gives the tert-butoxyl radical, [iodin](#page-6-0)e, and a hydroxyl anion (Scheme 5, step ([i\)\)](#page-4-0). Then, the tetrazole is deprotonated by hydroxyl anion to provide anionic species A (Scheme 5, step (ii))[. M](#page-4-0)eanwhile, homolysis of the benzyl C−H bond is induced by tert-butoxyl radical to give radical B, which is furt[h](#page-4-0)er oxidized by iodine to produce the benzyl cation C (Scheme 5, step (iii)). Finally, aryl tetrazole anion A reacted with benzyl cation C to form the product 3 (Scheme 5, step (iv)). Thu[s,](#page-4-0) the I_2/I^- redox system plays a vital role in this reaction.

In conclusion, an n-Bu₄NI-catalyzed direct oxidative coupling of methylarenes with aryl tetrazoles has been developed. This protocol provides a simple and green approach for the preparation of tetrazole derivatives. Substrates with various functional groups proceeded smoothly to provide the corresponding products in moderate to good yields. Notably, alkyl ethers could also be employed as substrates in the present protocol.

EXPERIMENTAL SECTION

General Information. Chemicals were used as received without special purification unless stated otherwise. ¹H and ¹³C NMR were recorded at ambient temperature on a 400 MHz NMR spectrometer. NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) as the internal standard. The coupling constants J are given in Hz. Melting points (mp) are determined with a MPA 100 apparatus and are not corrected. High-resolution mass spectrometry (HRMS) was performed on a TOF MS instrument with an ESI source.

General Procedure for the Alkylation of Aryl Tetrazoles. In a sealed tube, n -Bu₄NI (22.1 mg, 0.06 mmol) was added to the mixture of methylarenes 1 or alkyl ethers (9 mmol), aryl tetrazole 2 (0.3 mmol), and t-BuOOH (70% aqueous, 0.9 mmol, 3 equiv) at room temperature. The reaction mixture was stirred at 80 °C for 12 h. After the reaction, the reaction mixture was allowed to cool to room temperature. The solvent was then removed under vacuum, and the residue was purified by silica gel chromatography using a mixture of PE/EA to afford the desired product 3 and 5.

2-Benzyl-5-phenyl-2H-tetrazole $(3aa)$.⁶ White solid (58.8 mg, 83%), mp 60−62 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.14−8.16 (m, 2H), 7.50−7.45 (m, 3H), 7.35−7.44 (m, [5H](#page-5-0)), 5.80 (s, 2H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.4, 133.3, 130.2, 129.0, 128.9, 128.7, 128.3, 127.3, 126.8, 56.7 ppm; HRMS (ESI): Calcd for $C_{14}H_{12}N_4N_4$ $(M + Na)^+$ 259.0954, found 259.0960.

2-(4-Methylbenzyl)-5-phenyl-2H-tetrazole (3ba). White solid (57.7 mg, 77%), mp 91−93 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.27−7.99 (m, 2H), 7.52−7.41 (m, 3H), 7.33 (d, J = 8.0 Hz, 2H), 7.18 (d, $J = 7.9$ Hz, 2H), 5.75 (s, 2H), 2.34 (s, 3H) ppm; ¹³C NMR $(CDCl₃, 100 MHz)$ δ 165.3, 138.8, 130.2, 129.6, 128.7, 128.3, 127.3, 126.8, 56.5, 21.1 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)+ 273.1111, found 273.1107.

2-(3-Methylbenzyl)-5-phenyl-2H-tetrazole (3ca). Light yellow solid (46.5 mg, 62%), mp 61–63 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.25 (dd, J = 7.4, 2.1 Hz, 2H), 7.65−7.49 (m, 3H), 7.46−7.12 (m, 4H), 5.87 (s, 2H), 2.45 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.4, 138.8, 133.2, 130.2, 129.6, 129.15,128.7, 127.4, 126.8, 125.4, 56.8, 21.3 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)⁺ 273.1111, found 273.1104.

2-(2-Methylbenzyl)-5-phenyl-2H-tetrazole (3da). Light yellow solid (61.5 mg, 82%), mp 49–50 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.30−8.09 (m, 2H), 7.59−7.46 (m, 3H), 7.39−7.25 (m, 4H), 5.87 (s, 2H), 2.54 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.2, 136.9, 131.6, 130.8, 130.2, 129.7, 129.1, 128.8, 127.4, 126.8, 126.5, 54.7, 19.2 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)⁺ 273.1111, found 273.1115.

2-(3,5-Dimethylbenzyl)-5-phenyl-2H-tetrazole (3ea). White solid (59.4 mg, 75%), mp 80−82 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.21− 8.10 (m, 2H), 7.55−7.38 (m, 3H), 7.03 (s, 2H), 6.99 (s, 1H), 5.72 (s, 2H), 2.31 (s, 6H) ppm; 13C NMR (CDCl3, 100 MHz) δ 165.3, 138.6, 133.1, 130.5, 130.2, 128.8, 127.4, 126.8, 126.0, 56.7, 21.1 ppm; HRMS (ESI): Calcd for $C_{16}H_{16}N_AN_A$ (M + Na)⁺ 287.1267, found 287.1270.

2-(4-(tert-Butyl)benzyl)-5-phenyl-2H-tetrazole (3fa). White solid (61.3 mg, 70%), mp 122−124 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.25−8.03 (m, 2H), 7.51−7.43 (m, 3H), 7.39 (q, J = 8.5 Hz, 4H), 5.78 (s, 2H), 1.31 (s, 9H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.3, 152.0, 130.4, 130.2, 128.8, 128.1, 127.4, 126.8, 125.9, 56.5, 34.6, 31.2 ppm; HRMS (ESI): Calcd for $C_{18}H_{20}N_4N_4$ (M + Na)⁺ 315.1580, found 315.1583.

2-(4-Chlorobenzyl)-5-phenyl-2H-tetrazole (3ga). Light yellow solid (67.4 mg, 83%), mp 69−70 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.20−8.04 (m, 2H), 7.52−7.41 (m, 3H), 7.35 (s, 4H), 5.76 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 135.0, 131.7, 130.4, 129.8, 129.2, 128.8, 127.2, 126.8, 99.9, 56.0 ppm; HRMS (ESI): Calcd for $C_{14}H_{11}CIN_4Na$ $(M + Na)^+$ 293.0564, found 293.0569.

2-(4-Bromobenzyl)-5-phenyl-2H-tetrazole (3ha). White solid (83.2 mg, 88%), mp 80−82 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.20−8.07 (m, 2H), 7.53−7.43 (m, 5H), 7.29 (d, J = 8.4 Hz, 2H), 5.74 (s, 2H) ppm; 13 C NMR (CDCl₃, 100 MHz) δ 165.5, 132.2, 132.1, 130.4, 130.0, 128.8, 127.1, 126.8, 123.2, 56.0 ppm; HRMS (ESI): Calcd for $C_{14}H_{11}BrN_4Na$ $(M + Na)^+$ 337.0059, found 337.0051.

2-(4-Fluorobenzyl)-5-phenyl-2H-tetrazole (3ia). White solid (68.6 mg, 90%), mp 61–63 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.24–8.04 $(m, 2H)$, 7.55–7.36 $(m, 5H)$, 7.06 $(t, J = 8.6 \text{ Hz}, 2H)$, 5.76 $(s, 2H)$ ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 163.0 (d, J_{C−F} = 247 Hz), 130.4 (d, J_{C-F} = 8.6 Hz), 129.1, 128.8, 127.2, 126.8, 116.1, 116.0 (d, J_{C-F} = 21.8 Hz), 56.0 ppm; HRMS (ESI): Calcd for C₁₄H₁₁FN₄Na (M + Na)⁺ 277.0860, found 277.0869.

2-(4-Methoxybenzyl)-5-phenyl-2H-tetrazole (3ja). White solid (53.5 mg, 67%), mp 57−59 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.12 (d, J = 1.6 Hz, 2H), 7.51–7.40 (m, 3H), 7.38 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 5.73 (s, 2H), 3.78 (s, 3H) ppm; ¹³C NMR $(CDCl_3, 100 MHz)$ δ 165.3, 160.0, 130.2, 129.9, 128.8, 127.4, 126.8, 125.4, 114.3, 56.3, 55.2 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4NaO$ $(M + Na)^+$ 289.1060, found 289.1067.

2-(2-Chlorobenzyl)-5-phenyl-2H-tetrazole (3ka). White solid (63.3 mg, 78%), mp 68–70 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.20−8.11 (m, 2H), 7.51−7.41 (m, 4H), 7.32−7.24 (m, 2H), 7.18 (dd, J = 7.6, 1.5 Hz, 1H), 5.96 (s, 2H) ppm; 13C NMR (CDCl3, 100 MHz) δ 165.4, 133.6, 131.2, 130.3, 130.2, 130.0, 129.8, 128.8, 127.3, 127.2, 126.9, 54.0 ppm; HRMS (ESI): Calcd for $C_{14}H_{11}CN_4Na (M + Na)^+$ 293.0564, found 293.0573.

2-(4-Nitrobenzyl)-5-phenyl-2H-tetrazole (3la). White solid (54.8 mg, 65%), mp 122−124 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.25 (d, J $= 8.6$ Hz, 2H), 8.13 (dd, J = 6.6, 2.9 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.52–7.43 (m, 3H), 5.92 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.9, 148.4, 140.0, 130.6, 129.2, 128.9, 126.9, 124.3, 55.7 ppm; HRMS (ESI): Calcd for $C_{14}H_{11}N_5NaO_2 (M + Na)^+$ 304.0805, found 304.0811.

5-Phenyl-2-(1-phenylethyl)-2H-tetrazole (3ma). Colorless oil (63.8 mg, 85%); ¹H NMR (CDCl₃, 400 MHz) δ 8.17 (dd, J = 7.5, 1.6 Hz, 2H), 7.52−7.28 (m, 8H), 6.12 (q, J = 7.1 Hz, 1H), 2.11 (d, J = 7.1 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 164.9, 138.9, 130.1, 128.8, 128.7, 128.6, 127.5, 126.8, 126.6, 63.6, 21.1 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)⁺ 273.1111, found 273.1119.

2-Benzhydryl-5-phenyl-2H-tetrazole (3na).¹² White solid (72.1 mg, 77%), mp 111−113 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.17 (dd, ^J = 7.4, 2.2 Hz, 2H), 7.50−7.46 (m, 3H), 7.41[−](#page-6-0)7.34 (m, 11H) ppm; 13C NMR (CDCl3, 100 MHz) ^δ 165.3, 137.1, 130.3, 128.8, 128.7, 128.6, 128.3, 127.4, 126.9, 71.2 ppm; HRMS (ESI): Calcd for $C_{20}H_{16}N_4N_4$ (M + Na)⁺ 335.1267, found 335.1270.

2-(1,4-Dioxan-2-yl)-5-phenyl-2H-tetrazole (5aa). White solid (48.0 mg, 69%), mp 51−53 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.24−8.11 (m, 2H), 7.48−7.47 (m, 3H), 6.09 (dd, J = 6.1, 2.9 Hz, 1H), 4.43 (dd, J = 12.0, 6.1 Hz, 1H), 4.16 (dd, J = 12.0, 2.9 Hz, 1H), 4.09 (dd, J = 9.8, 5.8 Hz, 1H), 3.98−3.92 (m, 1H), 3.90−3.85 (m, 2H) ppm; ¹³C NMR (CDCl₃,100 MHz) δ 165.2, 130.5, 128.8, 127.0, 126.9, 84.0, 67.1, 65.8, 64.9 ppm; HRMS (ESI): Calcd for $C_{11}H_{12}N_4NaO_2$ $(M + Na)^+$ 255.0852, found 255.0860.

2-(1,2-Dimethoxyethyl)-5-phenyl-2H-tetrazole (5ba). Colorless oil (35.8 mg, 51%); ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (dd, J = 7.4, 2.3 Hz, 2H), 7.55−7.43 (m, 3H), 5.97 (t, J = 6.1 Hz, 1H), 4.05 (d, J = 6.1 Hz, 2H), 3.41 (s, 3H), 3.39 (s, 3H) ppm; 13C NMR (CDCl3, 100 MHz) δ 165.6, 130.5, 128.8, 127.2, 127.0, 91.5, 72.1, 59.5, 57.4 ppm; HRMS (ESI): Calcd for $C_{11}H_{14}N_4NaO_2$ $(M + Na)^+$ 257.1009, found 257.1017.

5-Phenyl-2-(tetrahydro-2H-pyran-2-yl)-2H-tetrazole (5ca). Colorless oil (53.8 mg, 78%); ¹H NMR (CDCl₃, 400 MHz) δ 8.26–8.12 (m, 2H), 7.47 (dd, J = 5.0, 2.4 Hz, 3H), 6.05 (dd, J = 7.7, 2.8 Hz, 1H), 4.01 (dd, J = 9.6, 5.3 Hz, 1H), 3.88–3.74 (m, 1H), 2.49 (dd, J = 16.7, 8.9 Hz, 1H), 2.18−2.14 (m, 2H), 1.77−1.71 (m, 3H) ppm; 13C NMR $(CDCl₃, 100 MHz)$ δ 164.9, 130.3, 128.8, 127.2, 126.9, 87.7, 66.8, 29.0, 24.5, 20.7 ppm; HRMS (ESI): Calcd for $C_{12}H_{14}N_4N_4O$ (M + Na)+ 253.1060, found 253.1054.

2-Benzyl-5-(p-tolyl)-2H-tetrazole $(3ab)$.⁶ White solid (60.0 mg, 80%), mp 115−117 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.03 (d, J = 8.1 Hz, 2H), 7.48−7.31 (m, 5H), 7.30−7.25 (m, 2H), 5.79 (s, 2H), 2.40 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.5, 140.4, 133.4, 129.5, 128.9, 128.8, 128.3, 126.8, 124.5, 56.7, 21.4 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)⁺ 273.1111, found 273.1118.

2-Benzyl-5-(m-tolyl)-2H-tetrazole $(3ac)$. White solid (57.0 mg) 76%), mp 116−118 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.11−7.81 (m, 2H), 7.45−7.32 (m, 6H), 7.27 (d, J = 6.2 Hz, 1H), 5.80 (s, 2H), 2.42 (s, 3H) ppm; 13C NMR (CDCl3, 100 MHz) δ 165.5, 138.6, 133.4, 131.1, 129.0, 128.9, 128.7, 128.3, 127.4, 127.2, 124.0, 56.7, 21.3 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)⁺ 273.1111, found 273.1102.

2-Benzyl-5-(o-tolyl)-2H-tetrazole (3ad). White solid (55.5 mg, 74%), mp 113−115 °C; ¹ H NMR (CDCl3, 400 MHz) δ 8.01−7.91 (m, 2H), 7.39 (m, 6H), 7.27 (d, J = 6.2 Hz, 1H), 5.80 (s, 2H), 2.42 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.5,138.5, 133.4, 131.0, 129.0, 128.8, 128.7, 128.3, 127.4, 127.2, 124.0, 56.7, 21.3 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4$ (M + Na)⁺ 273.1111, found 273.1107.

2-Benzyl-5-(4-chlorophenyl)-2H-tetrazole (3ae). Yellow solid (68.2 mg, 84%), mp 119−121 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, $J = 8.6$ Hz, 2H), 7.53–7.27 (m, 7H), 5.79 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 164.5, 136.3, 133.2, 129.2, 128.9, 128.4, 128.1, 125.8, 56.8 ppm; HRMS (ESI): Calcd for $C_{14}H_{11}CIN_4Na$ (M + Na)+ 293.0564, found 293.0570.

2-Benzyl-5-(4-fluorophenyl)-2H-tetrazole (3af). Yellow solid (57.2 mg, 75%), mp 77–79 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.18−8.07 (m, 2H), 7.46−7.32 (m, 5H), 7.19−7.08 (m, 2H), 5.79 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.2, 164.2 (d, J_{C−F} = 188.0 Hz), 133.2, 129.0 (d, J_{C-F} = 4.2 Hz), 128.9, 128.8, 128.4, 119.4, 115.9 (d, J_{C-F} = 22.0 Hz), 56.8 ppm; HRMS (ESI): Calcd for C₁₄H₁₁FN₄Na (M + Na)+ 277.0860, found 277.0871.

2-Benzyl-5-(4-(trifluoromethyl)phenyl)-2H-tetrazole (3ag).⁶ White solid (65.7 mg, 72%), mp 74–76 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.26 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.43–7.38 (m, 5H), 5.82 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 164.2, 133.1, 132.0 (q, J = 33.2 Hz), 131.8, 130.7, 129.0, 128.4, 127.1, 125.8 $(q, J = 3.7 \text{ Hz})$, 123.8 $(q, J = 270.8 \text{ Hz})$, 57.0 ppm; HRMS (ESI): Calcd for $C_{15}H_{11}F_3N_4Na$ $(M + Na)^+$ 327.0828, found 327.0821.

2-Benzyl-5-(4-methoxyphenyl)-2H-tetrazole (3ah).⁶ White solid (50.3 mg, 63%), mp 121−122 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, J = 8.9 Hz, 2H), 7.47–7.29 (m, 5H), 6.98 (d, J = 8.9 Hz, 2H), 5.78 (s, 2H), 3.85 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.3, 161.2, 133.4, 129.0, 128.8, 128.3, 128.2, 119.9, 114.2, 56.6, 55.3 ppm; HRMS (ESI): Calcd for $C_{15}H_{14}N_4N_4O (M + Na)^+$ 289.1060, found 289.1048.

2-Benzyl-5-(3-nitrophenyl)-2H-tetrazole (3ai). Yellow solid (61.5 mg, 73%), mp 82−84 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.26 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.46−7.38 (m, 5H), 5.82 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 163.7, 148.8, 132.9, 132.5, 130.0, 129.1, 129.0, 128.5, 124.8, 121.8, 57.1 ppm; HRMS (ESI): Calcd for $C_{14}H_{11}N_5NaO_2$ $(M + Na)^+$ 304.0805, found 304.0813.

2-Benzyl-5-(furan-2-yl)-2H-tetrazole $(3aj)$.⁶ Pale red oil (47.5 mg) 70%); ¹ H NMR (CDCl3, 400 MHz) δ 7.60 (d, J = 1.8 Hz, 1H), 7.47− 7.29 (m, 5H), 7.01 (d, J = 3.5 Hz, 1H), 6.70 (d, J = 3.5 Hz, 1H), 5.80 (s, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 158.8 (two coinciding carbon resonances), 144.3, 143.0, 133.1, 129.1, 128.4, 118.4, 111.5, 57.0 ppm; HRMS (ESI): Calcd for $C_{12}H_{10}N_4N_4O (M + Na)^+$ 249.0747, found 249.0752.

General Procedure for Gram-Scale Reaction of Toluene with 5-Phenyl-2H-tetrazole. n -Bu₄NI (736.7 mg, 0.2 mmol) was added to the mixture of toluene (30 mL), 5-phenyl-2H-tetrazole 2a (10 mmol), and t-BuOOH (70% aqueous, 30 mmol, 3 equiv) at room temperature. The reaction mixture was stirred at 80 °C for 12 h. After the reaction, the reaction mixture was transferred to a round-bottom flask. The solvent was then removed under vacuum, and the residue was purified by silica gel chromatography using a mixture of PE/EA to afford the desired product 3aa (1.70 g, 72%).

■ ASSOCIATED CONTENT

6 Supporting Information

Copies of ${}^{1}H$ and ${}^{13}C$ NMR spectra of all the compounds and kinetic isotope experiments are available in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTH[OR INFORMATIO](http://pubs.acs.org)N

Corresponding Authors

*E-mail: lwcczu@126.com (L.W.).

*E-mail: hemingyangjpu@yahoo.com (M.H.).

Notes

The auth[ors declare no competing](mailto:hemingyangjpu@yahoo.com) financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge the National Natural Science Foundation of China (21302014), the Natural Science Foundation for Colleges and Universities of Jiangsu Province (13KJB150002), and the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110).

■ REFERENCES

(1) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations; VCH Publishers: New York, 1989.

(2) (a) Fernandez-Bachiller, M. I.; Perez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M. I. J. Med. Chem. 2012, 55, 1303. (b) Das, S. G.; Srinivasan, B.; Hermanson, D. L.; Bleeker, N. P.; Doshi, J. M.; Tang, R.; Beck, W. T.; Xing, C. J. Med. Chem. 2011, 54, 5937.

(3) (a) Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Coord. Chem. Rev. 2011, 255, 485. (b) Singh, R. P.; Verma, R. D.; Meshri, D. T.; Shreeve, J. M. Angew. Chem., Int. Ed. 2006, 45, 3584. (c) Tao, G. H.; Guo, Y.; Joo, Y. H.; Twamley, B.; Shreeve, J. M. J. Mater. Chem. 2008, 18, 5524.

(4) Birnbaum, J.; Kahan, F. M.; Kropp, H. Am. J. Med. 1985, 78, 3. (5) (a) Seki, M. ACS Catal. 2011, 1, 607. (b) Diers, E.; Kumar, N. Y. P.; Mejuch, T.; Marek, I.; Ackermann, L. Tetrahedron 2013, 69, 4445. (c) Wang, L.; Wu, W. T.; Chen, Q.; He, M. Y. Org. Biomol. Chem. 2014, 12, 7923.

- (6) Aridoss, G.; Laali, K. K. Eur. J. Org. Chem. 2011, 6343.
- (7) For reviews on this topic, see: (a) Li, C. J. Acc. Chem. Res. 2009,
- 42, 335. (b) Scheuermann, C. J. Chem.- Asian J. 2010, 5, 436.
- (c) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53,

74.

The Journal of Organic Chemistry Note

(8) (a) Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827. (b) Ma, L.; Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333. (c) Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J. Org. Lett. 2011, 13, 3754. (d) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177. (e) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231. (f) Mai, W.; Wang, H.; Li, Z.; Yuan, J.; Xiao, Y.; Yang, L.; Mao, P.; Qu, L. Chem. Commun. 2012, 48, 10117. (g) Tan, B.; Toda, N.; Barbas, C. F. Angew. Chem., Int. Ed. 2012, 51, 12538. (h) Li, L.; Huang, J.; Li, H.; Wen, L.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 5187. (i) Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2012, 48, 979.

(9) (a) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376. (b) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331. (c) Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem.-Eur. J. 2011, 17, 4085. (d) Huang, J.; Li, L.; Li, H.; Husan, E.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 10204. (e) Shi, E.; Chen, S.; Chen, S.; Hu, H.; Chen, S.; Zhang, J.; Wan, X. Org. Lett. 2012, 14, 3384. (f) Feng, J.; Liang, S.; Chen, S.; Zhang, J.; Fu, S.; Yu, X. Adv. Synth. Catal. 2012, 354, 1287.

(10) (a) Dian, L.; Wang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Chem. Commun. 2014, 50, 11738. (b) Guo, S.; Yu, J.; Dai, Q.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 6240. (c) Xue, Q.; Li, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 3700. (d) Ochiai, M.; Yamane, S.; Hoque, M. M.; Saito, M.; Miyamoto, K. Chem. Commun. 2012, 48, 5280. (e) Pan, S.; Liu, J.; Li, H.; Wang, Z.; Guo, X.; Li, Z. Org. Lett. 2010, 12, 1932. (f) He, L.; Yu, J.; Zhang, J.; Yu, X.-Q. Org. Lett. 2007, 9, 2277. (g) Bhuyan, R.; Nicholas, K. M. Org. Lett. 2007, 9, 3957. (h) Fructos, M. R.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784. (i) Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org. Lett. 2000, 2, 2233.

(11) Ali, W.; Guin, S.; Rout, S. K.; Gogoi, A.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 3099.

(12) Han, F.; Yang, L.; Li, Z.; Xia, C. Adv. Synth. Catal. 2012, 354, 1052.